Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The molten sand that is a mixture of calcia, magnesia, alumina and silicate, known as CMAS, is characterized by its high viscosity, density and surface tension. The unique properties of CMAS make it a challenging material to deal with in high-temperature applications, requiring innovative solutions and materials to prevent its buildup and damage to critical equipment. Here, we use multiphase many-body dissipative particle dynamics simulations to study the wetting dynamics of highly viscous molten CMAS droplets. The simulations are performed in three dimensions, with varying initial droplet sizes and equilibrium contact angles. We propose a parametric ordinary differential equation (ODE) that captures the spreading radius behaviour of the CMAS droplets. The ODE parameters are then identified based on the physics-informed neural network (PINN) framework. Subsequently, the closed-form dependency of parameter values found by the PINN on the initial radii and contact angles are given using symbolic regression. Finally, we employ Bayesian PINNs (B-PINNs) to assess and quantify the uncertainty associated with the discovered parameters. In brief, this study provides insight into spreading dynamics of CMAS droplets by fusing simple parametric ODE modelling and state-of-the-art machine-learning techniques.more » « less
-
Electrolyte solutions play an important role in energy storage devices, whose performance relies heavily on the electrokinetic processes at sub-micron scales. Although fluctuations and stochastic features become more critical at small scales, the long-range Coulomb interactions pose a particular challenge for both theoretical analysis and simulation of fluid systems with fluctuating hydrodynamic and electrostatic interactions. Here, we present a theoretical framework based on the Landau–Lifshitz theory to derive closed-form expressions for fluctuation correlations in electrolyte solutions, indicating significantly different decorrelation processes of ionic concentration fluctuations from hydrodynamic fluctuations, which provides insights for understanding transport phenomena of coupled fluctuating hydrodynamics and electrokinetics. Furthermore, we simulate fluctuating electrokinetic systems using both molecular dynamics (MD) with explicit ions and mesoscopic charged dissipative particle dynamics (cDPD) with semi-implicit ions, from which we identify that the spatial probability density functions of local charge density follow a gamma distribution at sub-nanometre scale (i.e. $$0.3\,{\rm nm}$$ ) and converge to a Gaussian distribution above nanometre scales (i.e. $$1.55\,{\rm nm}$$ ), indicating the existence of a lower limit of length scale for mesoscale models using Gaussian fluctuations. The temporal correlation functions of both hydrodynamic and electrokinetic fluctuations are computed from all-atom MD and mesoscale cDPD simulations, showing good agreement with the theoretical predictions based on the linearized fluctuating hydrodynamics theory.more » « less
An official website of the United States government
